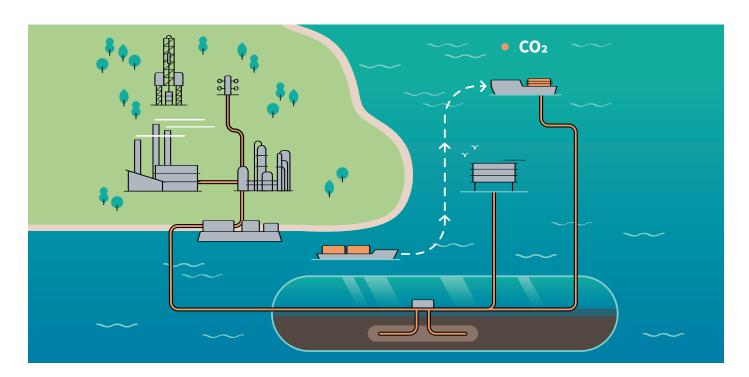


Contents

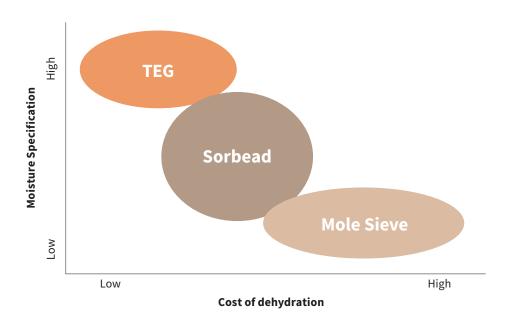
CO ₂ Dehydration Overview	4
CO ₂ Dehydration Technologies	5
Triethylene Glycol Dehydration	6-7
BASF Sorbead Dehydration	8-9
Molecular Sieve Dehydration	10-11

CO₂ Dehydration Overview

Carbon capture processes typically result in wet CO_2 gas streams that require further processing to meet transportation and storage specifications. The presence of water in CO_2 creates carbonic acid, a very corrosive fluid that, when left untreated, can cause severe corrosion to carbon steel metallurgy common in pipelines, pump stations, and storage facilities.


Dehydration is a critical step that involves the removal of water vapor from the CO_2 gas stream. CO_2 dehydration plays a crucial role in enabling the effective and safe transportation of CO_2 from capture facilities to storage sites. Implementing efficient dehydration technologies will enhance the viability of CCS projects.

There are a variety of proven and mature CO₂ dehydration technologies that can be deployed to meet gas specifications


for CO_2 transportation. Each comes with its own set of advantages and challenges. The selection of CO_2 dehydration technology will depend on several factors, including the CO_2 source, operational scale, energy requirements, cost considerations, and water content specifications for transport and injection well. Each application and method of CO_2 transportation, whether by pipeline, truck, rail, or ship, will require different water content and gas purity specifications (see table below).

As a leading global provider of CO2 dehydration technology and equipment, NOV has expertise in deploying CO₂ dehydration systems throughout the world. We can help you assess which technology best suits any given application.

	Pipeline	Medium Pressure Shipping	Low Pressure Shipping	Rail / Truck
CO ₂ Phase	Liquid (Supercritical)	Liquid	Liquid	Liquid
CO ₂ Temperature	Ambient	-30°C	-50°C	-18°C
Typical CO₂ Pressure	100-150 bar	15 bar	6.5 bar	14-20 bar
Typical Water Specification	100-400 ppmv	<30 ppmv	<5 ppmv	<30 ppmv
Typical Oxygen Specification	<10 ppmv	<10 ppmv	<10 ppmv	<10 ppmv

CO₂ Dehydration Technologies

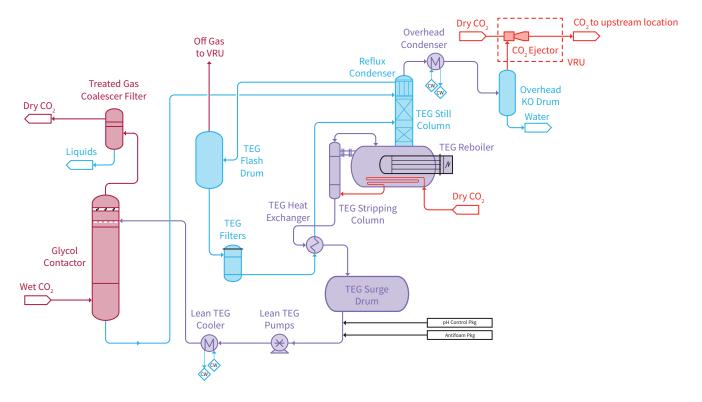
Triethylene Glycol Dehydration

Triethylene glycol (TEG) is an absorption-based gas dehydration method that uses a liquid solvent to selectively absorb water from the CO₂ stream. It is known for its high dehydration efficiency and commercial viability. Known for its high efficiency, commercial viability, and costeffectiveness, TEG results in a relatively higher water content level than other dehydration technologies. It is typically recommended for water content specifications down to 50 ppmv.

BASF Sorbead Dehydration

BASF Sorbead® technology is a temperature swing adsorption process that involves passing the CO₂ gas stream through a Sorbead aluminosilicate gel bed, which has a high affinity for water molecules. The Sorbead system is then regenerated through heat. It offers a relatively low energy, low cost, and simple method for dehydration. The ease of regenerating the Sorbead bed in a cyclic manner while achieving low water content in the dried CO₂ makes this process appealing. Sorbead dehydration is typically recommended for 5 to 50 ppmv water content specifications.

Molecular Sieve Dehydration


Molecular sieve temperature swing adsorption technology employs zeolite microporous structures that selectively adsorb water molecules based on size and polarity. The dehydration process involves the adsorption of water molecules onto the surface of the molecular sieve material. Molecular sieve systems are regenerated by using heat to desorb the water molecules. The ease of regenerating the molecular sieve in a cyclic manner while achieving very low water content in the dried CO₂ makes this process appealing for certain applications. Molecular sieve technology can achieve very dry CO₂ gas, which is beyond what is typically required for various CO2 transport methods and is more expensive than the other technologies. It is typically recommended for <1 ppmv water content specifications.

Triethylene Glycol Dehydration

Triethylene glycol (TEG) is an absorption-based gas dehydration method that uses a liquid solvent to selectively absorb water from the CO_2 stream. Known for its high dehydration efficiency, commercial viability, and cost-effectiveness, TEG results in a higher water content level than the other technologies. TEG dehydration systems can dehydrate gas streams typically down to 50 ppmv water content specifications.

TEG Dehydration at a glance

Our Glycol Dehydration offering:

- Meets the CO₂ dryness specifications of you project
- Stick-built and modularized options
- Compact TEG (Super Purifier)
- Provides the lowest OPEX solution for long-term operation
- Flexible design for dehydration efficiency
- Incorporates health, safety, and environmental control

We offer efficient and optimized process design, fabrication, and package delivery for CO2 dehydration systems. Whether using a full-scope or split-scope approach, we are comfortable working with EPCs, project developers, and consortium arrangements to meet various project requirements. Our direct relationships with key EPC companies, midstream/sequestration companies, and CCUS developers enable us to offer a complete turnkey solution.

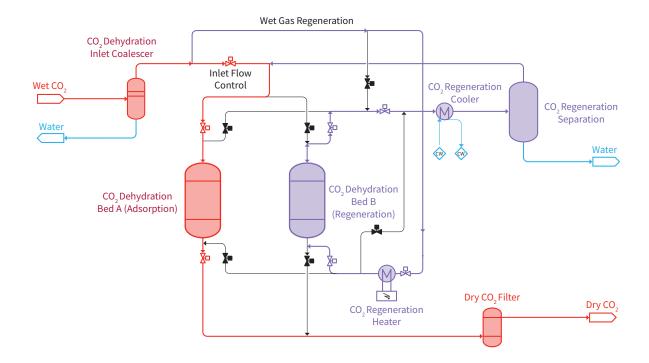
Glycol Dehydration

- Typical CO₂ flow capacity: ~10 to 5000 ktpa CO₂
- CO₂ water inlet composition: ~saturated
 - Flexible composition
- **Technology:** Glycol solvent based technology (TEG)
- Typical glycol flow rate: 1-18 m³/h (cubic meter per hour)
- **Constructability:** Customizable or standardized module

Notable features for CO₂ Glycol Dehydration:

- Suitable for water dryness down to 50 ppmv (2.5 lb/MMSCF)
 <50 ppmv (2.5 lb/MMSCF) evaluated on case-to-case basis
- Stripping agent either dry CO₂ or nitrogen
- Vapor recovery units (VRU) to recover off-gas CO₂ to eliminate emissions
- Qualified for onshore and offshore applications

Standardized TEG offerings:


- **STG-1** 1000 kg/h Lean TEG
- **STG-2** 2000 kg/h Lean TEG
- **STG-4** 4000 kg/h Lean TEG
- **STG-6** 6000 kg/h Lean TEG
- **STG-9** 9000 kg/h Lean TEG

BASF Sorbead Dehydration

BASF Sorbead® technology is a temperature swing adsorption (TSA) process that involves passing the CO_2 gas stream through a Sorbead aluminosilicate gel bed, which has a high affinity for water molecules. The Sorbead system is then regenerated through heat. It offers a relatively low energy, low cost, and simple method for dehydration. The ease of regenerating the Sorbead bed in a cyclic manner while achieving low water content in the dried CO_2 makes this process appealing. Sorbead dehydration is typically recommended for 5 to 50 ppmv water content specifications.

TSA with wet gas regeneration at a glance

Our BASF Sorbead offering:

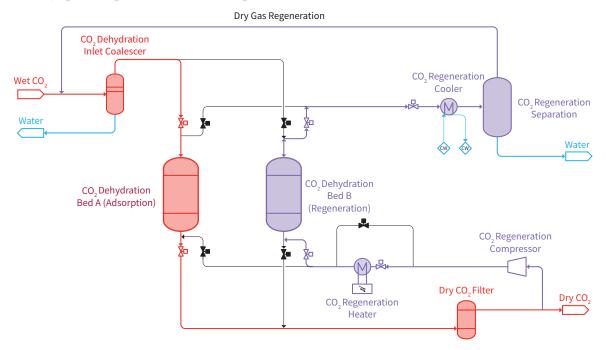
- Meets the CO₂ dryness specifications of your project
- Customized, stick-built solutions for the most challenging projects
- Standardized modularized solutions for fast deployment
- Wet gas regeneration or dry gas regeneration configuration to meet the needs of your project
- Provides the lowest OPEX solution for long-term operation
 - Lower regeneration temperatures compared to molecular sieves
 - Longer bed life compared to molecular sieves
- Smart Bed™ digital solution
- Flexible design for dehydration efficiency, pressure drop, and turndown ratios
- Incorporates health, safety, and environmental control

We offer efficient and optimized process design, fabrication, and package delivery for CO2 dehydration systems. Whether using a full-scope or split-scope approach, we are comfortable working with EPCs, project developers, and consortium arrangements to meet various project requirements. Our direct relationships with key EPC companies, midstream/sequestration companies, and CCUS developers enable us to offer a complete turnkey solution.

BASF Sorbead offering

- Typical CO₂ flow capacity: ~10 to 5000 ktpa CO₂
- CO₂ water inlet composition: ~saturation
 - Flexible composition
- **Technology:** TSA with aluminosilicate gel-based adsorbent
- Constructability: Customizable stick-built or modular

Notable features for TSA with BASF Sorbead:


- Suitable for water dryness down to 5 ppmv (0.25 lb/MMSCF)
 - <5 ppmv (0.25 lb/MMSCF) evaluated on case-to-case basis
- Acid resistant
- Fast start-up times
- High turndown ratios
- Inherently emissions free
- Onshore and offshore designs

Molecular Sieve Dehydration

Molecular sieve temperature swing adsorption (TSA) technology employs zeolite microporous structures that selectively adsorb water molecules based on size and polarity. The dehydration process involves the adsorption of water molecules onto the surface of the molecular sieve material. Molecular sieve systems are regenerated by using heat to desorb the water molecules. The ease of regeneration in a cyclic manner of molecular sieve while achieving low water content in the dried CO_2 gas stream makes this process a very appealing solution when low water specifications exist. Molecular sieve technology can achieve very dry CO_2 gas, which is beyond what is typically required for various CO_2 transport methods and is more expensive than the other technologies. It is typically recommended for <1 ppmv water content specifications.

TSA with dry gas regeneration at a glance

Our Molecular Sieve offering:

- Meet the CO₂ dryness specifications of your project
- Customized, stick-built solutions for the most challenging projects
- Standardized modularized solutions for fast deployment
- Wet gas regeneration or dry gas regeneration configuration to meet the needs of your project
- Provide the lowest dryness requirements
- Smart Bed™ digital solution
- Flexible design for dehydration efficiency
- Incorporates health, safety, and environmental control

We offer efficient and optimized process design, fabrication, and package delivery for CO2 dehydration systems. Whether using a full-scope or split-scope approach, we are comfortable working with EPCs, project developers, and consortium arrangements to meet various project requirements. Our direct relationships with key EPC companies, midstream/sequestration companies, and CCUS developers enable us to offer a complete turnkey solution.

Molecular Sieve offering

- Typical CO₂ flow capacity: ~10 to 5000 ktpa CO₂
- CO_2 water inlet composition: ~saturation
 - Flexible composition
- Technology: TSA with molecular sieve
- Constructability: Customizable stick-built or modular

Notable features for TSA with Molecular Sieve:

- Suitable for water dryness down to 1 ppmv (0.05 lb/MMSCF)
 <1 ppmv (0.05 lb/MMSCF) evaluated on a case-by-case basis
- Acid resistant
- Fast start-up times
- Inherently emissions free
- Onshore and offshore designs

NOV Inc. has produced this brochure for general information only, and it is not intended for design purposes. Although every effort has been made to maintain the accuracy and reliability of its contents, NOV Inc. in no way assumes responsibility for liability for any loss, damage or injury resulting from the use of information and data herein. All applications for the material described are at the user's risk and are the user's responsibility.

© 2024 NOV Inc. All rights reserved.

JIG 240095-EE-PFT-LCS

Corporate Headquarters

10353 Richmond Ave. Houston, Texas 77042 USA

