Bondstrand 5000/5000C Product Data

(Severely Corrosive Industrial Service and Oxidizing Acids)

Uses and applications

- Acid drains
- Bleach processing
- Chemical process piping
- Chlorinated water
- Chlorine
- Corrosive slurries
- Food processing plant
- Organic chemicals
- Oxidizing chemicals and acids
- Phosphoric acid
- Water Treatment/Purification
- General industrial service for severely corrosive liquids

The service temperature and concentration limitation for each chemical mixture shall be cross referenced to NOV FGS Chemical Resistance Guide.

Listings

Classification approval from LRS, DNV, ABS, BV and NK.

Performance

Working pressure from 150 to 232 psig (10 to 16 bar) depending on pipe size.

Operating temperatures up to 180°F (82°C). Subzero temperatures will not adversely affect mechanical properties.

Excellent corrosion resistance over a wide temperature range. See most recent release of Bondstrand Corrosion Guide for specific applications.

Does not require thrust blocks at ambient temperatures when properly installed in most soils.

Smooth inner liner (Hazen-Williams C = 150) produces extremely low frictional loss for greater discharge and reduced pumping costs.

Low thermal conductivity minimizes heat losses.

Optional: The product can be supplied in conductive type - Bondstrand 5000C for Conductive

Example of standard Quick-lock plus overwrap joint view

Composition

Pipe

Filament-wound fiberglass-reinforced vinylester pipe with integral 0.050-inch (1.3 mm) resin-rich reinforced liner.

Nominal pipe size		ASTM Designation	
In	mm	D2996	
1-6	25-150	RTRP 11FW-1012/11FE-1012	
8-16	200-400	RTRP 11FW-1013/11FE-1013	

Fittings

Filament wound fiberglass reinforced vinyl ester fittings with integral 0.050 inch (1.3 mm) resin rich reinforced liner. Following types of fittings available as a standard.

Tees

90° and 45° elbows

Crosses

Nipples and couplings

45° laterals

Reducers

Flanges and Blind

Laminated or molded flanges with ASME/ ANSI / JIS/ DIN standard drilling. Other flange bolt drilling standard available upon request.

Thermosetting adhesives

RP106 two-parts Vinylester resin and cure for 5000/5000C

Joining systems

Quick-Lock[®] straight/taper adhesive-bonded joint featuring integral pipe stop in bell for predictable, precise laying lengths plus overwrap on joint for enhanced joint performance.

Pipe lengths end-to-end

Standard pipe length (end-to-end) will have one shaved male ends and one integral female end. Pipe end with both plain ends supply is upon specific order requested.

Nominal pipe size		Random le	Random lengths		
in	mm	ft	m		
1 - 1½	25 - 40	9.8	3.0		
2-6	50 - 150	29.5	9.0		
8 - 16	200 - 400	39.0	11.89		

Fittings

Reducers, couplings, tees and 90° & 45° elbows are available with integral Quick-Lock female end. Plain end fittings are available upon specific order requested.

Laying lengths of filament-wound fittings with Quick-Lock ends to be refer to product dimensions table (PDT).

Nominal	pipe size	Pipe I.D.		Total wall	thickness ⁽¹⁾	Average so	ectional area ⁽²⁾	Pipe weig	ht (ref.)
in	mm	in	mm	in	mm	in²	mm²	lb/ft	Kg/m
1	25	1.07	27.3	0.138	3.5	0.53	340	0.4	0.6
1½	40	1.67	42.3	0.138	3.5	0.79	510	0.61	0.9
2	50	2.10	53.0	0.134	3.4	1.13	730	1.0	1.2
3	80	3.22	82.0	0.138	3.5	1.70	1100	1.5	1.7
4	100	4.14	105.0	0.178	4.5	2.73	1760	2.4	2.8
5	125	5.19	131.9	0.178	4.5	3.00	1928	3.1	3.8
6	150	6.20	159.0	0.178	4.5	4.06	2620	3.5	4.2
8	200	8.22	209.0	0.197	5.0	5.83	3760	5.0	6.1
10	250	10.35	263.0	0.197	5.0	7.31	4710	6.2	7.7
12	300	12.35	314.0	0.224	5.7	8.86	5719	7.4	9.1
14	350	13.56	344.0	0.221	5.6	10.85	7000	8.7	11.0
16	400	15.50	394.0	0.252	6.4	14.18	9150	11.2	14.0

Typical pipe dimensions and weights

1) Total wall thickness is combined of minimum structural wall thickness plus 1.3mm liner.

1) Use these values for calculating longitudinal thrust.

Typical pipe performance

Nominal pipe size		Internal pressure rating	Internal pressure rating ⁽²⁾		ure rating ⁽¹⁾
in	mm	psig	Bar	psig	Мра
1	25	232	16	2191.2	15.11
11/2	40	232	16	689.5	4.76
2	50	232	16	318.7	2.20
3	80	232	16	109.5	0.76
4	100	232	16	160.1	1.10
5	125	232	16	83.8	0.58
6	150	232	16	48.9	0.34
8	200	175	12	34.0	0.23
10	250	175	12	17.3	0.12
12	300	145	12	17.3	0.12
14	350	145	10	12.3	0.08
16	400	145	10	13.7	0.09

1) External pressure at 70°F (21°C)

2) Internal pressure at 150°F (65°C)

Fittings pressure rating

Fittings and flanges will have same product pressure rating as pipe.

Bushed saddles used Bondstrand Series 2000M epoxy saddles with 316 stainless steel outlet. Other outlet material available on special order.

Reducer bushings bonded into flanges/ saddles will have the same product rating as the flanges/ fittings unless otherwise shown in the products table.

Field testing

Bondstrand 5000/5000C piping systems are designed for hydrostatic field testing at 150% of rated design pressure. Pneumatic testing is not recommended

Typical mechanical properties

Pipe Property(1)	Units	Value	ASTM
Tensile strength	10³ psi	10.8	D2105
Longitudinal	MPa	74.5	
Tensile strength	10³ psi	77.2	D1599
Circumferential	MPa	53.2	
Tensile modulus	10³ psi	2.79	D2105
Longitudinal	MPa	19.24	
Tensile modulus	10³ psi	3.94	-
Circumferential	MPa	27.17	
Long-term hydrostatic(2) Design basis	10³ psi	12.8	D2992(B)
Static, Hoop Stress LCL 20 Year Life @150°F (65°C)	MPa	88.3	
Poisson's Ratio(3) V ah	-	0.32	-
Poisson's Ratio(3) V ha	-	0.61	-

(1) Based on structural wall thickness, at ambient temperature unless noted.

(2) Test fixtures were "free end" type. Specimens were stressed by internal pressure in both hoop and longitudinal directions.

(3) Vha = The ratio of axial strain to hoop strain resulting from stress in the hoop direction.

Vah = The ratio of hoop strain to axial strain resulting from stress in the axial direction.

Typical physical properties

Pipe Property(1)	Units	Value	ASTM	
Thermal conductivity	Btu-in/(h•ft2 • ° F) W/m•°C	2.0 0.28	C177	
Coefficient of thermal expansion (linear) (2 -16 inch) 77°F to 150°F (25°C to 65°C)	10-6 in/in/°F 10-6 cm/cm/°C	10 18	D696	
Flow coefficient	Hazen-Williams	150.00	-	
Absolute roughness	10-6 ft 10-6 m	17.40 5.30	-	
Specific gravity	-	1.80	D792	
Density	lb/in³ Kg/m³	0.065 1840	-	

Pipe stiffness

Nominal pipe siz	e	Stiffness factor ⁽¹⁾		Pipe Stiffness ⁽¹⁾		STIS ⁽²⁾	
in	mm	lb•in	N∙m	psi	МРа	psi	N/m²
1	25	340	38.4	1540	10.60	91.3	629655
11/2	40	340	38.4	1540	10.60	28.7	198132
2	50	340	38.4	1540	10.60	13.3	91586
3	80	340	38.4	460	3.20	4.6	31471
4	100	820	92.6	530	3.70	6.7	45992
5	125	556	62.9	187	1.29	3.5	24091
6	150	820	92.6	160	1.10	2.1	14053
8	200	1180	133.3	105	0.72	1.4	9770
10	250	1180	133.3	53	0.37	0.72	4984
12	300	1447	163.5	38	0.27	0.72	4957
14	350	1330	150.2	36	0.25	0.51	3520
16	400	2190	247.4	38	0.26	0.57	3937

1) Per ASTM D2412

2) STIS is referring to Specific Tangential initial Stiffness (Stiffness Class).

Span lengths

Recommended maximum support spacings for Bondstrand 5000/5000C vinyl ester pipe at various operating temperatures. Values based on 0.5-inch (12.5 mm) deflection at midspan for fluid specific gravity = 1.0. For fully continuous spans, values may be increased up to 20%. Decrease values by 20% for single spans.

Nominal pipe size		Pipe spans (ft)		
in	mm	100°F	140°F	170°F
1	25	9.3	8.9	8.7
11/2	40	10.7	10.2	9.2
2	50	12.1	10.8	9.4
3	80	13.7	12.3	10.7
4	100	16.1	14.5	12.6
5	125	17.0	15.2	13.3
6	150	18.1	16.1	14.2
8	200	20.1	18.1	15.5
10	250	21.4	19.2	16.6
12	300	22.3	20.2	17.5
14	350	23.1	20.7	18.1
16	400	24.3	21.6	18.9

1) Span recommendations are intended for normal horizontal piping support arrangements, but include no provision for weights (fittings, valves, flanges, etc) or thrusts (branches, turns, etc.).

2) Span recommendations are calculated for a maximum long-term deflection of ½ inch to ensure good appearance and adequate drainage.

Fiber Glass Systems

17115 San Pedro Avenue, Ste. 200, San Antonio, Texas 78232, USA Phone: 210 477 7500 Fax: 210 477 7560

NOV Inc. has produced this brochure for general information only, and it is not intended for design purposes. Although every effort has been made to maintain the accuracy and reliability of its contents, NOV Inc. in no way assumes responsibility for liability for any loss, damage or injury resulting from the use of information and data herein nor is any warranty expressed or implied. Always cross-reference the bulletin date with the most current version listed at the web site noted in this literature.

January 2022, CI5000ENG