Active Heave Drilling Drawworks (AHD) combine the latest technology in controls and design. These drawworks eliminate the need for overhead motion compensation machinery. In addition, braking energy is regenerated and fed back into the electrical system of the drilling rig, which increases overall rig efficiency. The active heave compensation also expands the 'drilling operational window' by allowing drilling programs to continue in heavier seas than conventional drawworks.

AHD-750

- **Max Hookload**: 1,000 kN (91.7 US T)
- **Fast Line Pull**: 1,500 kN (150 US T)
- **Weight**: 255,048 lbs (115,688 kg)
- **Fast Line Pull**: 176,913 lbs (80,246 kg)
- **Drill Line Diameter**: 2.77” (70.9 mm)

AHD-1250

- **Max Hookload**: 1,400 kN (144.7 US T)
- **Fast Line Pull**: 2,000 kN (200 US T)
- **Weight**: 341,289 lbs (154,806 kg)
- **Fast Line Pull**: 198,142 lbs (86,876 kg)
- **Drill Line Diameter**: 2.87” (72.9 mm)

AHD-1000

- **Max Hookload**: 1,600 kN (161 US T)
- **Fast Line Pull**: 2,200 kN (220 US T)
- **Weight**: 207,851 lbs (94,180 kg)
- **Fast Line Pull**: 119,585 lbs (54,243 kg)
- **Drill Line Diameter**: 2.87” (72.9 mm)

AHD-1400

- **Max Hookload**: 2,000 kN (205 US T)
- **Fast Line Pull**: 2,500 kN (250 US T)
- **Weight**: 418,022 lbs (189,418 kg)
- **Fast Line Pull**: 133,183 lbs (60,389 kg)
- **Drill Line Diameter**: 3.00” (76.2 mm)
The AC electric powered Single Speed Gear Driven Drawworks (SSGD) offers a design unique to the industry. By overpowering a drawworks with AC motors, we are able to create a simple, single speed drawworks with the hosting performance comparable to a conventional drawworks. The result is a simple design with few mechanical parts, a small footprint and light weight. These drawworks require minimal maintenance, are entirely self contained and completely enclosed. Fail safe spring applied disc brakes are utilized for parking and emergency only.

SSGD-750

Technical specifications

- **Max Hook load (14 lines)**: 1,200 kN (120 T)
- **Max Hook load (16 lines)**: 1,300 kN (130 T)
- **Max continuous power**: 6,440 kW (8,600 HP)
- **Max intermittent power**: 8,050 kW (10,968 HP)
- **Max block travel**: 14 lines (4 layers)
- **Max block travel**: 16 lines (4 layers)
- **Max intermittent power**: 10,968 kW (10,968 HP)
- **Max continuous power**: 9,000 kW (12,000 HP)

DRILLING MOTOR

- **Type**: GEB28A/ Baylor
- **Number of motors**: 5
- **Power requirement**: 600 V/690 V AC, 60 Hz
- **Fresh water supply**: 20 GPM @ 96.8°F
- **Lube oil heat exchanger**
- **Brake system main AC motors**
- **Emergency Disc brakes**
- **Design temperature**: 14°F up to 104°F
- **Area classification**: Zone 1 (Zone 2 for ATEX certified systems)

DESIGN DATA

- **Max hook load**: 14 lines (22.7 m)
- **Max hook load**: 16 lines (22.7 m)
- **Max continuous power**: 6,440 kW (8,600 HP)
- **Max intermittent power**: 8,050 kW (10,968 HP)
- **Max block travel**: 14 lines (4 layers)
- **Max block travel**: 16 lines (4 layers)
- **Max intermittent power**: 10,968 kW (10,968 HP)
- **Max continuous power**: 9,000 kW (12,000 HP)

DRILLING MOTOR

- **Type**: GEB22A / Baylor
- **Number of motors**: 4
- **Power requirement**: 600 V/690 V AC, 60 Hz
- **Fresh water supply**: 20 GPM @ 97°F
- **Lube oil heat exchanger**
- **Brake system main AC motors**
- **Emergency Disc brakes**
- **Design temperature**: 14°F up to 104°F
- **Area classification**: Zone 1 (Zone 2 for ATEX certified systems)

DESIGN DATA

- **Max hook load**: 14 lines (22.7 m)
- **Max hook load**: 16 lines (22.7 m)
- **Max continuous power**: 6,440 kW (8,600 HP)
- **Max intermittent power**: 8,050 kW (10,968 HP)
- **Max block travel**: 14 lines (4 layers)
- **Max block travel**: 16 lines (4 layers)
- **Max intermittent power**: 10,968 kW (10,968 HP)
- **Max continuous power**: 9,000 kW (12,000 HP)

DRILLING MOTOR

- **Type**: GEB22A / Baylor
- **Number of motors**: 6
- **Power requirement**: 600 V/690 V AC, 60 Hz
- **Fresh water supply**: 20 GPM @ 97°F
- **Lube oil heat exchanger**
- **Brake system main AC motors**
- **Emergency Disc brakes**
- **Design temperature**: 14°F up to 104°F
- **Area classification**: Zone 1 (Zone 2 for ATEX certified systems)

DESIGN DATA

- **Max hook load**: 14 lines (22.7 m)
- **Max hook load**: 16 lines (22.7 m)
- **Max continuous power**: 6,440 kW (8,600 HP)
- **Max intermittent power**: 8,050 kW (10,968 HP)
- **Max block travel**: 14 lines (4 layers)
- **Max block travel**: 16 lines (4 layers)
- **Max intermittent power**: 10,968 kW (10,968 HP)
- **Max continuous power**: 9,000 kW (12,000 HP)

DRILLING MOTOR

- **Type**: GEB22A / Baylor
- **Number of motors**: 6
- **Power requirement**: 600 V/690 V AC, 60 Hz
- **Fresh water supply**: 20 GPM @ 97°F
- **Lube oil heat exchanger**
- **Brake system main AC motors**
- **Emergency Disc brakes**
- **Design temperature**: 14°F up to 104°F
- **Area classification**: Zone 1 (Zone 2 for ATEX certified systems)
AHDD-1000

DESIGN DATA
- **Max hook load dual drawworks (14 lines):** 1,400 kN (1,270 mT)
- **Max hook load dual drawworks (16 lines):** 1,234 kN (1,119 mT)
- **Fast line pull:** 192,904 lbs (87,500 kg)
- **Weight:** 300,038 lbs (136,095 kg) x 2
- **Drill line diameter:** 2½"
- **Max continuous power:** 13,800 Hp
- **Max intermittent power:** 16,698 Hp
- **Max block travel:** 16 lines (3 layers)
- **Max block travel:** 14 lines (3 layers)
- **Area classification:** Zone 2
- **Design temperature:** -4°F up to 113°F (-20°C up to 45°C)
- **Brake system:** Main AC motors
- **Brake system:** Emergency Disc brakes
- **Brake disc cooling method:** Air cooling
- **Fresh/seawater supply (20 GPM @ 96.8°F):** 40 GPM @ 96.8°F (9.08 m³/hr @ 36°C)

DRILLING MOTOR
- **Type:** GEB22A5 TEWA C
- **Number of motors (each drawworks):** 6 x 2
- **Power requirement:** 600 VAC, 60 Hz, 3 phases

AHDD-1400

DESIGN DATA
- **Max hook load dual drawworks (16 lines):** 1,600 kN (1,451 mT)
- **Max hook load dual drawworks (18 lines):** 1,442 kN (1,308 mT)
- **Fast line pull:** 191,376 lbs (86,807 kg)
- **Weight:** TBC
- **Drill line diameter:** 2¼"
- **Max continuous power:** 15,000 Hp
- **Max intermittent power:** 18,280 Hp
- **Max block travel:** 18 lines (4 layers)
- **Max block travel:** 16 lines (4 layers)
- **Area classification:** Zone 2
- **Design temperature:** -4°F up to 104°F (-20°C up to 40°C)
- **Brake system:** Main AC motors
- **Brake system:** Emergency Disc brakes
- **Brake disc cooling method:** Air cooling
- **Fresh/seawater supply (20 GPM @ 96.8°F):** 20 GPM @ 96.8°F (4.54 m³/hr @ 36°C)

DRILLING MOTOR
- **Type:** GEB28A1 TEWA C
- **Number of motors (each drawworks):** 5 x 2
- **Power requirement:** 690 VAC, 60 Hz, 3 phases

AHDD-1600

DESIGN DATA
- **Max hook load dual drawworks (16 lines):** 1,000 kN (907 mT)
- **Max hook load single drawworks (16 lines):** 1,000 kN (907 mT)
- **Fast line pull:** 137,789 lbs (62,500 kg)
- **Weight:** 142,000 lbs (69,400 kg) x 2
- **Drill line diameter:** 2½"
- **Max continuous power:** 9,200 Hp
- **Max intermittent power:** 12,880 Hp
- **Max block travel:** 16 lines (Dual drawworks)
- **Max block travel:** 16 lines (Single drawworks)
- **Area classification:** Zone 1 (Zone 2 for ATEX certified systems)
- **Design temperature:** -4°F up to 104°F (-20°C up to 40°C)
- **Brake system:** Main AC motors
- **Brake system:** Emergency Disc brakes
- **Brake disc cooling method:** Air cooling
- **Fresh/seawater supply (20 GPM @ 96.8°F):** 20 GPM @ 96.8°F (76 l/min @ 36°C)

DRILLING MOTOR
- **Type:** GEB22A2 (AC)
- **Number of motors (each drawworks):** 4 x 2
- **Power requirement:** 690 VAC, 60 Hz, 3 phases

For reference only, please contact your local sales contact for more information.
SSGD-1000

- Single shaft, single speed drawworks with hoisting performance comparable to conventional drawworks
- Simple design, few mechanical parts, small footprint and light weight
- Self-contained, completely enclosed and requires minimal maintenance

Technical specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max hook load 14 lines</td>
<td>1,000 sT (907 mT)</td>
</tr>
<tr>
<td>Max hook load 12 lines</td>
<td>867 sT (788 mT)</td>
</tr>
<tr>
<td>Fast line pull</td>
<td>159,447 lbs (72,324 kg)</td>
</tr>
<tr>
<td>Weight</td>
<td>207,851 lbs (94,180 kg)</td>
</tr>
<tr>
<td>Drill line diameter</td>
<td>2” (50.8 mm)</td>
</tr>
<tr>
<td>Max continuous power</td>
<td>6,900 Hp</td>
</tr>
<tr>
<td>Max intermittent power</td>
<td>8,400 Hp</td>
</tr>
<tr>
<td>Max block travel 14 lines</td>
<td>14 lines (4 layers)</td>
</tr>
<tr>
<td>Max block travel 12 lines</td>
<td>12 lines (4 layers)</td>
</tr>
<tr>
<td>Area classification</td>
<td>Zone 2 (for ATEX certified systems)</td>
</tr>
<tr>
<td>Design temperature</td>
<td>-4°F up to 113°F (-20°C up to 45°C)</td>
</tr>
<tr>
<td>Braking system main</td>
<td>AC motors</td>
</tr>
<tr>
<td>Braking system emergency</td>
<td>Disc brakes</td>
</tr>
<tr>
<td>Brake disc cooling method</td>
<td>Air cooling</td>
</tr>
<tr>
<td>Fresh/seawater supply, main AC circuit</td>
<td>20 GPM @ 96.8°F (77 l/min @ 36°C)</td>
</tr>
</tbody>
</table>

AHD-1000

- Eliminates the need for overhead motion compensation machinery
- Braking energy is regenerated and fed back into the electrical system of the drilling rig, which increases overall rig efficiency
- Active Hoist Compensation expands the "drilling operational window" by allowing drilling programs to continue in heavier seas than conventional drawworks

Technical specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max hook load 14 lines</td>
<td>1,000 sT (907 mT)</td>
</tr>
<tr>
<td>Max hook load 12 lines</td>
<td>850 sT (771 mT)</td>
</tr>
<tr>
<td>Fast line pull</td>
<td>137,789 lbs (62,500 kg)</td>
</tr>
<tr>
<td>Weight</td>
<td>185,000 lbs (83,940 kg)</td>
</tr>
<tr>
<td>Drill line diameter</td>
<td>2” (50.8 mm)</td>
</tr>
<tr>
<td>Max continuous power</td>
<td>5,750 Hp</td>
</tr>
<tr>
<td>Max intermittent power</td>
<td>8,050 Hp</td>
</tr>
<tr>
<td>Max block travel 14 lines</td>
<td>14 lines (4 layers)</td>
</tr>
<tr>
<td>Max block travel 12 lines</td>
<td>12 lines (4 layers)</td>
</tr>
<tr>
<td>Area classification</td>
<td>Zone 1 (Zone 2 for ATEX certified systems)</td>
</tr>
<tr>
<td>Design temperature</td>
<td>14°F up to 104°F (-10°C up to 40°C)</td>
</tr>
<tr>
<td>Braking system main</td>
<td>AC motors</td>
</tr>
<tr>
<td>Braking system emergency</td>
<td>Disc brakes</td>
</tr>
<tr>
<td>Brake disc cooling method</td>
<td>Air cooling</td>
</tr>
<tr>
<td>Fresh/seawater supply, main AC circuit</td>
<td>20 GPM @ 96.8°F (77 l/min @ 36°C)</td>
</tr>
</tbody>
</table>

AHD-1000

- Fully redundant hoisting system
- Superior hoisting speed and wire line life
- Based on the trusted and proven AHD technology

Technical specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max hook load dual drawworks</td>
<td>1,000 sT (907 mT)</td>
</tr>
<tr>
<td>Max hook load single drawworks</td>
<td>1,000 sT (907 mT)</td>
</tr>
<tr>
<td>Fast line pull</td>
<td>147,789 lbs (66,200 kg)</td>
</tr>
<tr>
<td>Weight</td>
<td>142,000 lbs (69,400 kg) x 2</td>
</tr>
<tr>
<td>Drill line diameter</td>
<td>2” (50.8 mm)</td>
</tr>
<tr>
<td>Max continuous power</td>
<td>9,200 Hp</td>
</tr>
<tr>
<td>Max intermittent power</td>
<td>12,880Hp</td>
</tr>
<tr>
<td>Max block travel 16 lines</td>
<td>16 lines (Dual drawworks)</td>
</tr>
<tr>
<td>Max block travel 16 lines</td>
<td>16 lines (Single drawworks)</td>
</tr>
<tr>
<td>Area classification</td>
<td>Zone 1 (for ATEX certified systems)</td>
</tr>
<tr>
<td>Design temperature</td>
<td>-4°F up to 104°F (-20°C up to 40°C)</td>
</tr>
<tr>
<td>Braking system main</td>
<td>AC motors</td>
</tr>
<tr>
<td>Braking system emergency</td>
<td>Disc brakes</td>
</tr>
<tr>
<td>Brake disc cooling method</td>
<td>Air cooling</td>
</tr>
<tr>
<td>Fresh/seawater supply, main AC circuit</td>
<td>20 GPM @ 96.8°F (77 l/min @ 36°C)</td>
</tr>
</tbody>
</table>

Technical specifications* (for reference only, please contact your local sales contact for more information).

- Eliminates the need for overhead motion compensation machinery
- Braking energy is regenerated and fed back into the electrical system of the drilling rig, which increases overall rig efficiency
- Active Hoist Compensation expands the "drilling operational window" by allowing drilling programs to continue in heavier seas than conventional drawworks

Technical specifications* (for reference only, please contact your local sales contact for more information).

- Fully redundant hoisting system
- Superior hoisting speed and wire line life
- Based on the trusted and proven AHD technology

Technical specifications* (for reference only, please contact your local sales contact for more information).

- Eliminates the need for overhead motion compensation machinery
- Braking energy is regenerated and fed back into the electrical system of the drilling rig, which increases overall rig efficiency
- Active Hoist Compensation expands the "drilling operational window" by allowing drilling programs to continue in heavier seas than conventional drawworks

Technical specifications* (for reference only, please contact your local sales contact for more information).

- Fully redundant hoisting system
- Superior hoisting speed and wire line life
- Based on the trusted and proven AHD technology

Technical specifications* (for reference only, please contact your local sales contact for more information).
Crown Mounted Compensator (CMC)
Specialized for locked bottom operations

CMC-E
The one piece solution

CMC-H/H2
Excellent performance made for SS300 rigs

Active Heave Compensator (AHC)
Designed for position control of the CMC

Standard delivery includes
• Set of two (2) compensator cylinders.
• Fluid/Gas Accumulator.
• Fluid Storage Unit with pumps for installation at deck level.
• Control cabinet for installation in safe zone at deck level.
• Single PV Ring (Working PVs).
• Mechanically prepared for AHC.

Standard delivery includes
• One complete CMC-E including cylinder, accumulators, working gas PVs,
crownt block and equalizing system.
• Fluid/Gas Accumulator.
• Fluid Storage Unit with pumps for installation at deck level.
• Control cabinet for installation in safe zone at deck level.
• Single PV Ring (Working PVs).
• Mechanically prepared for AHC.

Options
• Service handling tool (SHT)

Technical specifications
Crownt block capacity, static	1,500 Kips	1,500 Kips	2,800-3,200 Kips
Compensator capacity, dynamic	600 Kips	800 Kips	1,000 Kips
Compensator stroke	72"
Crownt block sheave configuration	6 x 72" / 7 x 78" / 8 x 78"
Weight (complete)	110-145 mT

Technical specifications
Model	CMC-E-250-25	CMC-E-350-25
Crownt block capacity, static	1,500 Kips	2,000 Kips
Compensator capacity, dynamic	600 Kips	1,000 Kips
Compensator stroke	72"
Crownt block sheave configuration	6 x 72" / 7 x 78" / 8 x 78"
Weight (complete)	120 mT

AHC cylinder is primarily used for the following purposes
• Optimization of the CMC performance during operations like landing of components onto seabed, like BOP or Christmas tree.
• Wire line logging inside well without the need for wire rigging against slip joint and required weak link.
• ADC (Auto Driller Controller) ready

Delivery includes
• Motion Reference Unit (MRU)
• Wireline mode, Part of control system
• AHC cylinder controls and Wire Line Mode are executed by the CMC PLC controller and integrated into the CMC control cabinet.

Optional delivery
• Standalone Hydraulic Power Unit for AHC

Technical specifications
Model	AHC-CMC-25	AHC-CMC-35
Capacity	25 mT	35 mT
Max speed	1.22 m/s	1.22 m/s
Cylinder stroke	730 mm / 914 mm	730 mm / 914 mm
Weight AHC complete	4.0 mT	4.7 mT

*For reference only, please contact your local sales contact for more information.
Wireline Riser Tensioner (WRT)

Description

The wireline tensioner provides positive tension to the marine riser, and compensates for the relative motion between the riser and the drilling rig. The tensioners are installed diametrically opposite to each other. This is to avoid any lateral forces in the riser tensioner ring when reducing tension in one unit (bleeding off air for wire rope travel etc.). The tensioners maintain tension in each support wire, which is connected to the support ring on the marine riser pipe. The wires from the support ring run over the pivot hinged idler sheaves, via the fixed lead-in sheaves and then around the two double sheave assemblies on each end of the tensioner cylinders. The wires are then attached to the wire rope anchors.

- A four to one mechanical advantage is obtained, cylinder stroke of 12.5 ft. is transferred to 50 ft. of wire rope travel
- A fluid connection block is installed between the accumulator and cylinder
- Prevents damage on the cylinder and other equipment
- Accumulator gas side is connected to a gas reservoir to obtain constant tension in marine riser pipe
- Centralized control of tensioners
- Driller’s control panel interfaces with control unit for operator to start, operate, monitor or shut down the total system

Technical specifications

<table>
<thead>
<tr>
<th>WRT-120</th>
<th>WRT-200</th>
<th>WRT-225</th>
<th>WRT-250</th>
<th>WRT-280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic capacity (at total laps)</td>
<td>250 kips (1,090 kN)</td>
<td>250 kips (1,090 kN)</td>
<td>250 kips (1,090 kN)</td>
<td>250 kips (1,090 kN)</td>
</tr>
<tr>
<td>Weight ton</td>
<td>26.75</td>
<td>26.75</td>
<td>26.75</td>
<td>26.75</td>
</tr>
<tr>
<td>Weight double</td>
<td>53.5</td>
<td>53.5</td>
<td>53.5</td>
<td>53.5</td>
</tr>
<tr>
<td>Cyl. stroke</td>
<td>16.4 ft (5 M)</td>
<td>16.4 ft (5 M)</td>
<td>16.4 ft (5 M)</td>
<td>16.4 ft (5 M)</td>
</tr>
<tr>
<td>Stroke diameter (nom)</td>
<td>3.81 in (100 M)</td>
<td>3.81 in (100 M)</td>
<td>3.81 in (100 M)</td>
<td>3.81 in (100 M)</td>
</tr>
<tr>
<td>Wire diameter</td>
<td>2”</td>
<td>2”</td>
<td>2”</td>
<td>2”</td>
</tr>
<tr>
<td>Design temperature</td>
<td>-40°C to +5°C</td>
<td>-40°C to +5°C</td>
<td>-40°C to +5°C</td>
<td>-40°C to +5°C</td>
</tr>
<tr>
<td>Design pressure</td>
<td>3,300 psi</td>
<td>3,300 psi</td>
<td>3,300 psi</td>
<td>3,300 psi</td>
</tr>
<tr>
<td>Gas volume (standard)</td>
<td>76,800 l</td>
<td>76,800 l</td>
<td>76,800 l</td>
<td>76,800 l</td>
</tr>
<tr>
<td>Piston speed (max)</td>
<td>2 m/s</td>
<td>2 m/s</td>
<td>2 m/s</td>
<td>2 m/s</td>
</tr>
<tr>
<td>Piston speed (extreme)</td>
<td>4 m/s</td>
<td>4 m/s</td>
<td>4 m/s</td>
<td>4 m/s</td>
</tr>
<tr>
<td>Design temp.</td>
<td>-20°C to +55°C</td>
<td>-20°C to +55°C</td>
<td>-20°C to +55°C</td>
<td>-20°C to +55°C</td>
</tr>
<tr>
<td>Hose connection</td>
<td>8”</td>
<td>8”</td>
<td>8”</td>
<td>8”</td>
</tr>
<tr>
<td>Max tension capacity (at midstroke)</td>
<td>1,800 kips (8,070 kN)</td>
<td>3,600 kips (16,140 kN)</td>
<td>4,800 kips (21,350 kN)</td>
<td>4,800 kips (21,350 kN)</td>
</tr>
<tr>
<td>No of tension cylinders</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Inlet pressure</td>
<td>230 bar (3,340 psi)</td>
<td>230 bar (3,340 psi)</td>
<td>230 bar (3,340 psi)</td>
<td>230 bar (3,340 psi)</td>
</tr>
<tr>
<td>Outlet pressure</td>
<td>230 bar (3,340 psi)</td>
<td>230 bar (3,340 psi)</td>
<td>230 bar (3,340 psi)</td>
<td>230 bar (3,340 psi)</td>
</tr>
</tbody>
</table>

N-Line Riser Tensioner (NRT)

Description

The wireline tensioner provides positive tension to the marine riser, and compensates for the relative motion between the riser and the drilling rig. The tensioners are installed diametrically opposite to each other. This is to avoid any lateral forces in the riser tensioner ring when reducing tension in one unit (bleeding off air for wire rope travel etc.). The tensioners maintain tension in each support wire, which is connected to the support ring on the marine riser pipe. The wires from the support ring run over the pivot hinged idler sheaves, via the fixed lead-in sheaves and then around the two double sheave assemblies on each end of the tensioner cylinders. The wires are then attached to the wire rope anchors.

- A four to one mechanical advantage is obtained, cylinder stroke of 12.5 ft. is transferred to 50 ft. of wire rope travel
- A fluid connection block is installed between the accumulator and cylinder
- Prevents damage on the cylinder and other equipment
- Accumulator gas side is connected to a gas reservoir to obtain constant tension in marine riser pipe
- Centralized control of tensioners
- Driller’s control panel interfaces with control unit for operator to start, operate, monitor or shut down the total system

Technical specifications

<table>
<thead>
<tr>
<th>NRT-1800</th>
<th>NRT-3600</th>
<th>NRT-4800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max tension capacity (at midstroke)</td>
<td>1,800 kips (8,070 kN)</td>
<td>3,600 kips (16,140 kN)</td>
</tr>
<tr>
<td>No of tension cylinders</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Inlet pressure</td>
<td>230 bar (3,340 psi)</td>
<td>230 bar (3,340 psi)</td>
</tr>
<tr>
<td>Outlet pressure</td>
<td>230 bar (3,340 psi)</td>
<td>230 bar (3,340 psi)</td>
</tr>
<tr>
<td>Design temp.</td>
<td>-20°C to +55°C</td>
<td>-20°C to +55°C</td>
</tr>
<tr>
<td>Hose connection</td>
<td>8”</td>
<td>8”</td>
</tr>
<tr>
<td>Max tension capacity (at midstroke)</td>
<td>1,800 kips (8,070 kN)</td>
<td>3,600 kips (16,140 kN)</td>
</tr>
<tr>
<td>No of tension cylinders</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Inlet pressure</td>
<td>230 bar (3,340 psi)</td>
<td>230 bar (3,340 psi)</td>
</tr>
<tr>
<td>Outlet pressure</td>
<td>230 bar (3,340 psi)</td>
<td>230 bar (3,340 psi)</td>
</tr>
</tbody>
</table>